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ABSTRACT

2 L
//53
Followins the exact linear theory of conical shells riven

in Flugre's "Stresses in Shells", a solution for a segment of an

lsotropic truncated conical shell with linearly varvins~ t:ickness

subjected to an arbitrary lateral normal load is obtained., The
secment is clamped at the smaller circular end and free at the
other end, Ihe straight edges lying in two meridians are assumed

to be free from bending and normal force. )Q U ok
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T. THTRODITCTION
The study of a sz=pment of a conical shkell is of interest to
the sponsoring arency as the study r=lates to the stress analysis

of engine shrounds., ‘A shroud 1s a segment of a conicsl shell sub-

jected to latera2l normal load and temperature change. The smaller
circular edge may be considered clamped and the other thr=e edces
iree,

The analytical investigation of such a structure may be
divided into two phases., The first phase is concerned with the
lateral normal load; the second, with the temperature change. The
present report is the result of a study of the first phase only.
The other phase requires further investigation.

A systematic literature search for the formulations and

solutions of problems concerned with conical shells subjected to

3% Assistant Professor of Eng ineering lechanics, University of

Alabama, University, Alabama.




normal loade has been made. olurre in hile racent boolk, Relcrence
(1) JStresses in Shells," presents the most complete and directly
applicable basic formulations of the problem, This formulation,
which is cxact within the frame-work of linear theory of slasticity,
will be followéd in the present work,

The available solutions of homogenous conical shell problems
can be classified into two eategories, The first category is for
shells with constant thickness, The second is for those having
a thickness directly proportional to the dlstance measured from
the apex along the surface, This distance will be denoted by s,
All the solutions are functions of two variables; one variable is
g, the other variable is the angle @ measured in a plane perven-
dicular to the geomstric axis of the cone, In all of the solutions,
the variables are separable, so that the solutions are expressed

in terms of Fourier series in & with functions of the other

variables as coefficients., 1In the first category, if there is
axial symmetry, seen from Reference (2) and (3), the coefficients
are Ltessels fuhctions while if there is axial asymmetry seen
from Keferences (L) to (7), the coefficient are power series, Aas
it is pointed out in the discussion of Reference (5) and also in
(6) these power-series converge so slowly that the solutions ob-
tained are of no practical use, In the second category, seen
from Reference (1), regardless of whether or not axial symmetry
exists, the coefficients are riven in closed forms,

In the present problem, there is axial asymmetry. The thick-
ness of shell could be either constant or linearly varying. The
spell serment ic culte thin and 1s far awe; from trnz apcox, Fence,
If the shell thickness vaics tre rate of chan:e of .the thick-

Al

ncss 1g very small, sor

1473

implicity the thickness will be
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assume= to -wary linearl: from the apex, The thell is

also assumed to ke isatronic, Nsvertheless, if,

it is of interest to the sponsoring agency, as the next step, a
segment of a conical shell with constant thickness and of orthotropic
materlal will be considered,

The conical panel studied here, as mentioned before is a
cantilevered one subjected to lateral normal load with the smaller
circular-arc end clamped and the other end free, The two straight
edges lying on two meridians are first considered as free edges.
However, considering these edres free causes some trouble in
seeking an analytical solution, As has been pointed out in the case
of a panel cut from a cylindrical shell in Reference (1) p. 239:

"it has so far not been possible, and probatly never will be with

simple mathematical means, to find a solution which can satisfy any

rectangular panel cut from a cylincrical shell." It seems that

this is also true in the present case. After an analytical exam-
inatlon and a consideration of practical convenience, the straight
edges are modified by attaching a bar to each of them. The bar
will carry the axial and transverse shearing force but leave the
shell edges free to rotate and to move in the tangential directions,
In what follows, a solution will be obtained which will satisfy
these modified boundary conditions alonc each of the stralght edges.
The'shell sepment studied is of isotropic and homégeneous
material, However, the result could be used for a rational design
of a stiffened shell provided the stiffeners are closely spaced in
both directions, A detailed procedurg for applying the result to a

stiffened shell 1s given ir A-neniix I.

3




II. SOLUTION

Consider a segment of a truncated thin conical shell of

elastic isotropic and homogeneous materialQ whose middle sur face

is described by the co-ordinates = and 6 . Let s be the distance
measured from the apex along the conical surface as shown in Fig.l,
and € be the anzle measured from a fixed meridian to another one.
The inclination of s with respect to the geometrical axis is in-
dicated by the angle o shown in the figure. The end of s::L1
is fixed and that of s=L is free., The edges lying along the two

meridians of @ =0 ande = §,are first considered to be free, Let

u, v, and w be three displacement components in s, @ and normal

to the middle surface directions respectively, The elastic law
assumes the following relationships between the forces and dis-

placementes:

Ns =DV + T(W aecak + V+ W Zan < J] -k 2" Tar o
No= DIF (55 +V + Wian o) + 9 V™

+K§§E7»6~»o¢ +Wloam's + W et +SW'] Xan oL
Nse = D i%;LJE'-'§‘+ ‘—!i:[ ]

St
+k LY ‘s‘ISESU-"‘“'SW";,f\}"‘W'aT{;*j Zon b o

2
Nes = D _L:EL“'LZE . v’ j
2 13 w -y + oy M

- , .
Fe S SV e+ sw ' g =W ] fan ™

Ms =K [E*W SV Zand + V(W' gec’od + SW*- W pee 4 Lan %]




Mot K /W aultd 4 SW +W ™ o+ Vam & +US* W' ]
Mse =k (1-Y) ZIEW" - W'~ SU pim &k + U e AT fae &

Mes = K(I-V) ST BW" -W/ - £ 5w 0im o + U um &
+ 3V 2 o] pecd (ta-h)

° e T e - “l," \O’
x
' i\/!
| Ve
‘ | ' N Mss '
4 : [ <
Ve 4 /d%
T Nes / < ’ Meas Mg ‘/'/15 g
Ne w\\ﬁa Qs _ ,/95f~5a$ ‘\73; \J
/'557\‘0,/\1,”9@ //és // M;ﬁ’"’}sa/e
c\'tfw@u ‘g6

i
osms’dS/Z Ney w&ds 1‘05# Mt ML
.l"
i i‘* o, }

Hei Neds

(za;

1

PO




where N_,......,Mes are forces and moments per unit length acting
on the sections of elements as shown in Flg. 2. All forces and
moments shown in the figures are positive. The dot symbol indicates
the partial differentation with respect to s, and prime, differ-

entiation with respect to @ . For instance,

i~ D ) U
U=75s W= 3025

The right-hand rule is applied to the double-arrow head which

represents moment in Fig., 2b., D and K are constants of rigidity

defined by
3
- - E ¢
D= 7%%_-— and K= = (2)

where E is Young's modulus of elasticity, ¥ is Bbisson's ratio,
and t, the thickness of the shell.‘

Applying the condition of egquilibrium, the following six

4= 2 o E9 hrita$tmas
cguatIons are—ootarneca:

(SNs) + Nesatcol ~Ng = -A S

S(Nse)' +Noaetot +Nos -QoTan o = -PeS
No fan o + Qe gec o& + (S0 = P S
GCMs)'+ Mbs cecox -Meo = SQs

(5Mss) +M% gecd + Mos = SQe

(3a-1)
5(Nes -Nse) = Mes ,éfw <

where Ps and PFe are tangential surface loads in s and @
directions respectively, P, , the normal surface load acting on

an element per unit of area,



The last eguation in (3) 1s an identity which can be
shown through the elastic law (1), This equation, thus, can be
dropped. Usin~ equations (3d) and (3e) to eliminate the transverse
shearing forces @, and Qe 1in the other three equations, one finally

obtains three equations of equilibrium. They are

S(5Nse) + SNe neck + SNes - (5SMse) Tan &
“Mos Jan X ~Mbland gsc ot = ~Po 52 ’

(SNs) +Nss aec ot - Ne = -5 S )

SHo Zam A + S(SMs)" +(5Msa) arcet +(SMbsY00c « 127
+ Mo pectoL - M = P 52

It has been mentioned before that for simplicity the thickness

of the shell is assumed to be in direct proportion to the distance

s but Iindependent to 8

t =45
(5)
Substituting this expression into (2), one observes
K -pc2
D -kS
where
2
=5
e (6)

1s a very small number tecause § , defined in (5) usually is a

small constant,



If the segment is subject to the normal load only, the
equations of equllibrium may be expressed by means of the elastic
law in terms of the three displacement components in the following

form:
{- se /+v
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The above formulation of the problem is given in Raference (1).

The segment has the following boundary conditions: Along s=L1
it is clamped so that all the displacement components and also the
rate of change of w with respect to s must vanish, i.e.

u=v =w = o0,

_ow | for s = L (8)
2s -0 1

Along the edge s = L, the segment is free from all stresses so
that the normal moment (MS), normal force (Ng), transverse and

tangential shearing forces (Qg and Nse) and twist moment (Mss )




must vanish, The vanishing of the first two forces is quite
obvious, Simply

M_= 0 and N =0 for = = T, (9)
The other three forces, according to n.rchhoff's law in the tlicory
of plates may be combined into two by considering the twisting
moment to be composed of shearing forces. Introducing Sg and TS
as the resultant shearing forces in transverse and tangential

directions respectively, one hass:

Ss =Qs+§"-b—g—1§-’—ma‘

(10)
Ts = Nse - M-si"? Aan o
Hence, one requires
Sg =0and T =0 for s = L (11)
The boundary conditions alons the two straight edges, as
mentioned before, are also considered to bte free, Then along
these edges,
Me =0
Ng =0
forsd = 0 and & (12a-4d)

Teq = Nes =0 t

So =@p + M=o
It is impossible to have all of the above conditions satisfied. 1In
order to compare the significance of these four gquantities, an
examination of their orders of magnitude will be taken in what follows.
It is observed from Eq.(5) that éd is a very small constant

because, in the present case, s is much larger than t, i.e. 5¢<|.
Y

L

" Refer to 0,233 reference (1)
. 9




It should also = noted that u, v and w as well as the products
of s™ with the mth derivatives of u, v and w with respect to
s are of the same order as t, where m 1is an integer, In fact,
this assumption is essential to the present theory. Thus 1t

can be seen from equations (1b); (1d) and (1f) that, considering

the leading terms,

Ne =0 (4)
Nes =0 (§) (13a-c)
Mo =0 (¢ =0 (&
and from equations (12d4), (2d) and (lg),
Se= 0 (Qg) = 0 3 =0 (£ (13-4)

where the notation 0 (§) means that the function is of the order
of §, etc., Thus the transverse shearing force, Se , is of the
highest order of § . Therefore, it is negligible or it may be
provided by a comparatively weak support, Further, among the
other three in (13), the tancential shearing force Nesis easily
provided by attaching a relatively inextensible bar to each of
the straight edges. By requiring this bar to have a certain degree
of stiffness in the normal to the middle surface direction, 1t
may provlde the resistance to both S¢ and Nes. This modification
allows the edges to be only partially free. . Hence, along these
partially free edges, one requires that
Ng =0 and Mg = 0 foré = 0 and 6, , (14)

Observation of equations (1b) and (If) reveals that the above

two conditions are satisfied by assuming

- . Arré . mo
M:EA“{“(S)M%Q , VT :Sj_'.Bn{n(S)ﬂ"“ -"3'- y W= E.Cnfn(ﬂ o r?'.(lS)

nsy

where A, , Bn , and Cn are constants, anqgﬁyis a function of s to

be determined by the =et of <ifferential equations (7). (Note when n=0.)
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gpresents a confisuration of twisting <due to a distributed

I._-l
Ut
L]

tangential shearing force applied at the free end at s=L,
which iz of no interest in the present case.)
The normal sur face load p may also be expressed in Fourier

series

w .
Pr= Pcs) Z;Qn On ﬂ%?

(16)
where P (s) is a given function, and ap, are fourier coefficients

computable from a given load distribution in @ -direction,

for later convenilence, a nondimensional variably is in-

- [ S
I=JT (17)

along with the assumption that

troduced such that

NORUM (17)
in which An is a constant to be determined, Substituting (15)
into (7), one reguires
dnhAn +diz Bn +di3Cn
d21An +d22 B +d23Cn .
32"-‘E3lﬂn + d328n +dss Cn] s "% any ,P(U) ’

"

(o)

0 (19a-c)

where

du = d®FA% + dn

di = dr An + dn (20)
dis = dis O 4 di dn 4 dis’

d = dea 08 + dah

11




3 3 2 2 ¢’ 3
daz = des dn + J,_; An + d2z An +d2y
¥ .7 2 2 ’

d3z = sz dn ¢ ofsz An + J33

while o, d3. and ds are obtained by replacing 4, , DY -An

in dn,des,diz respectively; where
dZ = G043k Jan * 2]
dt =TV F (1436 Tanr ) 10 002 ]
dn = %?n s oL
din = z(7-5v)n st «
di = ~5(3-VInTanA fase &
daz = Kon fan & e &

ds = C%k(9-11v)+11h Zn pec &

(21)

dz: = '41_ |
dp = - [+ (1)1t $nr o) +kTan & (14 155 n et )]
deg = ‘%KW A

d:; :%K,t’ﬁm,o(

des = ’é‘KWME*Z(/-’V)n‘mc%(]'/ ::',za'rn oA

dos =~k Zam k(2201 K Tana[l- 8 T +2(-3VI" pac ol ]
¢ _K

Bz 7T

4k = E[7-67 v 9 gt
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dsg = -{]wn’u + - [G3-12%) -16( /- Zam™ot) Zawm o
+ 81 -12Y - 4 Lam®)n® cee®d + 160t mc“adz

All d:j are constants depending on the parameters k, ¥ "o and n.
Thre homoseneous solutions are obtained from a set of equations
formzd by setting the term on the right hand side of equations
(19) equal to zero, yielding
duhn + dBn +dizCn =0
d21Ant d228n +d23Cn =0 (22)
d31An+d32 8, +d33Cn =0

The necessary and sufficient condition for the constants A, ’
BEn and C,, to be non-vanishing is that the determinant
formed by the coefficients of the three simultaneous equations

vanish, i.e.

dv de di
du da du| - o (23)
d31  dz2  dss

Substituting the coefficients given by (20) into the determinant,

one has

W B A+ 8aln + Fedt + 80 =0 , (21)

where
b= {diBids + dids + 20 des —dis diy
Fdn [hid% +dsdB] - dizdi ik
b i [2d3dd + dndBT ]
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vok {diads -2dddis +didl +didh]
tdr[aldss + dirdss -2d23dis +dss drs)
+dn [Zddsdis -2 disdim 4 2disds +dind3 ]
+dn[zddsdiz +2ds s - didf ]
tdos [Fd5 3T +dot [2dkclis +diadis] }

Go= & {47 B2 di 4didd -2ekb ekl +dis dfs]
+di [hdfs 4 dizalis]
4dn[2d:5dim -2dizdiz +2di3di3 ~dn da3_]
+du [Bdzsdis ~2d8:diz + die dl337]
tdtCadiyds +disdiz] +d2d5 dis1)

90 = A‘ dl:@:}.d;g -Cll; JI.SJ
$dn [Zdssd,y -diadss]
tche [~dz oz ] z |

and
A =dl s dos +dit did ok |
Ali of the above are constants.
Equation (2L) has eight roots, Adkj=l,2,....,8),* The roots
dn; may be real or complex. When they are complex, they occur

in groups of four: n=%fﬁwf/ﬂnz

% The method of solving equation (2L) for ), is given in Reference”l@).
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wile woal roote coms In pairs of co-ousite £ r.  Sines
the solution of rsal roots can be deduced from that of complex
roots s=imply ty letting sn ecual to zero, a general solutionTof a
group of complex roots of An will ke discussed in what follows.
let a group of roots be

Ani 7 ko, -H'/»{m Nny ==Y 4{/[m

Nrz =% g “¢ Mns Any = =%, “i M .
On substitution of each one of the above roots into either two
of equations (22), one may solve for A and Bn, in terms of Cu,

(j=1,2,3 and L), such as

AﬂJ‘ :d'\J' C'\J‘ and an "'ﬂnJ'CnJ' . (25)
Now, one has the solution of (15) of this group of roots of

An as follows:

u =§: E<mCm 9

n=t

>
V= Z,B,.. Cos ?AM-‘ +fnCm 7&«."‘ * Sy Cn‘s?vmr' *jnv&v?l)w—ljﬂ'w'n%{

nlT®

d - " -1 LY 2
a ‘/’ O(nz(nz ?l\u : + °(n3Cv\3 ?’4 : 4’ 0(0‘4. CA4?A ' jm-;,

w:i Cn g™ 4 Cm?""“‘ 4 Cng 7"“”' + cn,g"“"':) pin 2ZE
In the abtove "56 lution, A s £~ and the undetermined constants
Cn,; are all complex numbers,l
BecaéLO;An/isﬂeeejufate to Aw, » and Ass is corjurate to Ang,
one will expeet that oln: 18 conjugate to odar and olaz conjugate

to dﬂ" ’ i.en

odni= Lot 4 d ne olag = Lny 4 ( Any

An2 =;n|~t‘gr\l O(nq —"Zhs-"l-'g’“'f.
And so for B = fon, _“\/;" Bns = fons 4 (fBn¢

gﬂl TZ'n -4.2")- 8,,‘/ _"Ah, - L‘ﬂnlf

where ;(—,\J: and/'}';u- are resultant real number computed from either

two of (227

# Details see in "Appvendix T -
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In order to exprece the colution in real form, a set of real

numbers C,; is also introduced such that

Cni = %\(EN - Lé'\z) Cnz = *( Ehs -t Enq‘)

Cha = %.(Em +¢ Ev\1> CV\§ = !‘L(Eh‘i +{ E"“)

then od;, @n; » Co; and.)h;znay be replaced by their respective
real constants °—(.-\,' ,(-2;,.,5 s 6,\3 s X and [, - Using the identity

thM - eL/«Q"\‘A

and those identities between the exponential functions and
hypertolic functions, one brings the above solution into real

form.

W= f'é‘i W (S S 4R Ta) e b g) + &y Sna =FoaTint) i (M Iy Y]
97 (B Ty #5004 T ) ca (i Ung) + (o3 Tt = Sy Es ) (s, S )] cnn B
V= 5‘2 ‘me ¢ §6. Car+ Bua Ca ) erait, ’*\\Q"“ (Bm G ™ @nxtm) S (A QN\:)]
+y [ Gn,Enﬁ'(iwanOm(umq« g+ ((szhﬂ "(Ehu 5«\33 ‘M\((H " Y *g):u o /n;:__e
W= 5 2 LE LY sy, fag) 4(Goa) 8 (it )]
FF T ) em andmy) +(Tay) ain (am n )T} 2 222

When this solution is introduced into equations (1), (3d4) and
(3f), it is found that all of the stress resultants of the homo-

geneous part my be trought into the form

. NS (26a)
; - Qm e
g -F\m ) PW\ \“3 N‘tzl F;\\M m ',‘_1_1.;._‘
e, b

16



where

Fewm = 31'“' [( Aar Tt + Bam Co2) Coa- (M1 e )
+ (AnmCnr -Brm Cat) i (Hn ,4~7)
# 47 [TGrm Cns 4 Hom Cne ) m(/q..,(w?) (26b)
t (Grwm Cny = Hnm Cnz ) foim (M A )]

and m 1s a number to identify the stresses. The values fm, Q@m
and expressions Anw and Bam are siven in Table T, The eXxpressions
Gnm a0dHpm may te obtained by replacing Ay, s ;(‘m, Tm ,ﬂnz, and
Zn InAnm a0d Bam by Koz solng s £ s Bny 803 Xn) respectively, while Ani
remains unsltered, ‘hen there is another set of complex roots

of An , say
/\\n5:X-nz+L'/h’nz )‘n-l:'%y\z{'(.'ﬂé\).

l)no = Xnz -L'/Hn:— Ang = -Xne ’L/n:-

the displacement components and stresses will be in the form

©, e tme
™m = @ nw o (27a)
= finf On D o s

where
fom = § " [(OomCrs + bam Tos oo (m 4o )
t (Aum Tne = bamTas ) Gon (Mo Lnty)
4-?"""'-[(_%,,,"2-,\, thoamCoy) M(/“"‘A‘?') (27v)
+(Gamlng = homCrr )0 pn; %?}

in which €, (i=5,6,7 and &) are four arbitrary constants;" To
obtain the expressionsf,ms bam ,gmand[\um ,J;\,; and)g,; are computed
first by replacingXa, and/n. by Xna and/f,q_in the computations
of L, andznj then replacingdy ,@n; s Xnz and¥m in the expressions
O Anm » Bram s GamanCHam by ¢ ,/Zml s Xnz and/I{,\; .

When the roots of An are real, the formulas may be obtained

17




by putting %n = On s Mn1 =D > Ani =k ,ﬂ—m-‘-/fu and Jv\tfnl =0 .
Then Bam=0 , Anm 2re the coefficients to be used in (26). By
the similar replacement one can ottain the coefficients Gnm ,
an,\znui?nm. Repeating this procedure for the other pairs of
roots of An , one rets the homoseneous solution.

A purticular solution is obtained in what follows when the
lateral normal load distribution in the s-direction, P(s) in (16),
is assumed in the form

P(s)=s"
where r is a conctant, Lovever, for simplicity, r is assumed

to e a real number in the following solution. Changzing the

—

variatle & to y according to (17), one ras

- grpar
Py) =7 4" (26)
On substitution of the above into equation (1S) and observing

(19¢), one finis

hn-/ :Z(r-}?.)

or
AnT 2 +5 = ) (29)
and - — -
dvAn + Jdr B~ 1 dizCa 0O
daiAn 1 d2e Bn 12 Cn = O 30)
e dz ;)-A +dn Ba +d33Cn = Jan
where\J:,LE— » & given constant, The hyphens are placed atove

the constants A, ,Bn. 2ndCa to distingiish them from those in
the homogeneous solution. The An in expressions (20) is now =
known numrer J , hence all the coefficients in (3) can be
computed by followinz (20), From (20), one can solve for Aa ,
B~ and C, . Let

18




dll Ju. dl3
Je = du dae dauz

dzy dn da3

Then

En = 5_’2';J Qn Budll 'dllC/lI] (31)

Expressing :4_,\ and B in terms of Ca s one has

Zn :¢" Z-r\ and En = Vnz’n (32)

where

¢ - d4|J23'C/'3‘/7'L
nT didin -dadas

VJ - d‘:dll "dut_JZB
"7 dudea -dnd,,

Thus, the particular solutions of the displacements are in the

following form:
Upzg™"D Ty cm 2IE

- _
Vert Lt e e (33)
W= T"ZE . hlTe
P'ﬂ' n Q4 9, )
Substituting these solutions into the elastic law (1), the
particular-solution part of the stresses may be given in the

following form:

Q0 ' nié
O ) - 7 2
Im:ﬁn? Tom ' (Jha)
ot terr nITE
&,

where

(2%)

Jw and @Qm are again given in Tatle I. Snm 1s obtained by

puttingx,-a s M.20 ,J,\,:p,,//;m: G and&,\z:/g,,,_: o0 O Anm in the table.
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ptiont riven vy (26), (27) 2nd (2Ur), the

}_..I

Comwirne the

[£2]

O

oy

st th

e

[l

complete solution is obtained, € solution ke esxprossed
n ovne form
- :
nlié
— Om ! e &
-Krﬂ :71"; § X‘%M '
n=) [(F R _%'j

Waore
Xam= Fam 4—{nm + IThnm (35t)
According to the bouandiary conditions civen by (F), (9) and
(11), one reccuires that
X, 7Inz =X n3 :Inq- = 0 for y :,@
XnsXng =X ng “Xne = 0 for ? = |

.

Teis set of eirht sim:ltansous souations enables one to determine

(26)

the el~ht arbitrary censtants C, (k=1,2,....%) involved in Faym
and ﬁ”n for sgachk n, .ith thece constants determined, one obktains

3ll the decired streess-s from {25),

11T, DISCUSZION AMD COHCLIUSION
he bar recuired to te attached to each of the strai~ht edres
would ofier a certain cde.ree of stiffness in the transverse

direction, I .verthelecss, it cannot te considered as a supoort.

e
7l

diccrzoancy make:s thie solution to ke an apnroximate one;

RO 5 N4 A 3
o

otrerwise, 1t is exact. fhe accuracy of thes solution increases
with the increase of the transverse stifiness of the bar, The
cilect of this azproximation would be secondary in strescses as
it hns been ceen from the order sxamination. Ffowever, due to

the rslatively weak stiffenss of thie edses, the effect on the

20




deflection would be consideractle, An up-bound of the deflection
could be given, in case it is of interest, by considering the
bar as a cantilever beam subjected to the transverse shearing
force.

For very thin shells, the constant k defined in (6) is very
small, Hence, some terms of its product might be omitted,
However, for generality and tased on the consideration that the
present solution can only be worked out through the use of a
high speed computer, the retention of these terms would not
cause too much trouble, Therefore all of the terms are remained,

Eefore a conclusion is made, a numerical example should be

male, This will be done in an extention of the work.
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APPANDIX T
DETAILED PROCEDURsS FOR APPLYING
THE SOLUTION TO A STIFFaEN®=D SEGMENT OF A SHsLL
The obtained solution of the unstiffened sezment may te
aprlied to a stiffened segment simply by repliggng the thickness
t, ri~idity constants D and K defined in (2) énd the constant
k in (6) by their eaquivalences, if the stiffeners are closely
spaced and arranged in a same war in toth s and 6 -directions.
The escuivalent constants may be computed in the following way.

Let the geometrical dimensions and material constants of a ziven

J

stiflfened segment

d)G.,L/L:,v and § (A1)

be given and let a, be the cross-sectional area of a stiffener
and a, be the area of the wall of the segment between two
neighboring stif feners which are spaced with a distance b, Then

the eguivalent thickness t is given by

ts = &-Za-'l- (A2)
The equivalent morent of inertia per unit width is -%-, in which
I is the moment of inertia of the composite section of a2, and aa.
Put

L. C _ﬁi. (A3)

b 12 3

from which one can compute the constant c, The equivalent

rigidity constants D and K may be obtained by following (2)

and (A3):
Ets _CEt;
D= 95— , Ks= 2 (1-v%) (Al)
Assuming :
fs=§°s (A5)
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st = ke S

where

ke = CLz (16)
Thus, by replacing the constants D, L and k appearing in the
solution bty Ds, r¢and ksresvectively, one can compute the
constants JZ defined in (21) and in turn the coefficients 8; civen
in (2L) for each n (n=1,2,....,%ee late). '

To solve equation (2li) for A, , followins the method siven in

reference (g), 1let
(‘: =X (:

\7)
9028, 84=C, 35D , 9.=E
Then eguation (2l.) reads
“+Br3+CX*+DX+E =0 (A8)
which can be separated into two equations
.B B; \ Z* i
X+t (Z+ J -(c-2) )X+(F +|5 -F)=0
and (49)

z 1 2‘— -
x‘+(-g--,\l%—-(c-z) )X +(%-’J‘T-E)=o
where 2 catisfies

_ R
Z"C_ 22+A
R=Bcp-p - B*E

=BD-4E

The approximate soluﬁon of & may be obtained by the rule

-c- _FR
h*l zn+

where Z, 1s the nth avproximation considering Z, =0. 1In case

and

the convergence of the approximation is slow, Newton s method
may be applied. II Z =p te any approximate solution, a better

aprroximation is
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e T T 14 e

o (P AN+ R
RRANCETIEECED

Therefore, from equations (19) and (A7), one obtains eirht
roots of )n, say}nj(j=1,2,....,F). The next step is to compute
ofm; and @, as defined in (25). They may te computed from any
two of ecuations (22). Let the first two be used which, using
the coefficients rsiven in (20), -ecome

ANy + 47 An +Ldi M +d21Bn +Ld3 My + 43 Aoy +dis Jn = 0 (210)

[“ dia M +J::] An +B:A X:'; +‘J:\]Bn*{dsa )‘rsw) "4:3 )\r:. "rJ;::, )hi +d=: ] Ch =0

In general
)‘n'\ = Xn +L){nj

Mio= (2w LT ny pen)

m= (T = 3% um ) L3 Ko Moy = Ay )
NeTE L Ly = Ky For j=1,3, 5 Fny ==Xy For 1334 elc. see tate .
Hence, (410) may be written in the following form

[a+(&TAn +Lb+i L] Ba=~Ts+3]c,
(A11)

where

&= dy (X5 = May) + 40

T = AT Kny Am

b, = d:z Knj .t d\i

B, = d% AAny

s = di (X M) Ky + d
sa= [d; Xn) +di3 3 Mn) (A1)
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Qa= = dja Xy + 44
a:. =~ ‘J\IRMM
by = (XA = aby) + dia
Ba = 2d3n Ty Mn)
Sa= d3 (K3 - 3Ky m3 I daaly ~m3 ) +9da Kij +dSs
5. < £3:3(3K:3 ‘M::,) + Qdm Xh:)"'dalz ]Mns

Now, A and B, are to be solved from (111). Let

A= | &+ bi+{ b
- Qat+ Gy bat (B,
= [aba- b ~alk + &E 1+ ab,* gbi~ab, =T b ]
- 4,4+ &,
5= G +LE b,+E,
QtiS bat by
=L by = 5%, - bea + I,E;:\*‘L L<, Byt ba— b~ 'L'c;]
= D~+.T,
- Gd-La_. C,*L.E-,
Qy +( Gy Ca+(Cy
slaea-q Ty ~&S #5335 ] + L T3 Lt & S - G -aq.Ca
= E +iE

where A, , A , T , D, ,E and E, are defined in their

respective equations. Then, one has the roots of A, and Bp as
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An; = n) Cn and Bny = Qnj On
where
__D_”_L D'A'+%‘&']“"L‘. ElAl—D\Zl J
AT ar ¢ &% AP+ R™

E o ElA\"" E‘K, \ r E‘A|—E\-A,

e s Ry )

It may be seen from (212) to (A1?) that if ons chan-es the =ign

of//\“') from positive to negative, only the sign of the imaginary

V]

parts of all the exrressions will Ye chanced, while the real parts

£

will not be affected. But when one changes the sign of I“J not
only the signs but the magnitudes also will be affected, nence,

s

il one assumes a group of )\h') to be

My = Xn* Uiy )\h?’: = Xny + L M,

Ma= Xu = (M, Mg = X~ (K,
one will have

%y, Sm + { Stma, oy = X +L:(vw

om0~ R O
and gm = (SH\ * Ena &.ﬁ: Ey\z + L-(th

Coa ™ éh«-Lbhx Brg = Baz™ L Rny

where S'(N and -E'\L (i=1,2,3 and L) are computed from (Al3).

With 3{“ , ;(,,; , EM , ‘(‘3_,\.& » Xy and My, at hand, one is ready to
go to Table I to compute Anpand Bym in (26).  As has been stated
before, by replacing S(M , 5(,‘: , E’“ , E,mand X b7 S¥nz, (T E«i s
E"“ and =%, in Anyn 2nd Bue,, one octains GnmandHpw respectively,

for the other set of complex roots of >‘h , Or when the roots are
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real, these expressions may be ottained by following the procedures
stated alter equation (27). This completes the computation of the
homogeneous so lution,

Consider the case in which the lateral normsl load is uniformly

distributed in the s-direction and is a step function in ®6-direction

such that o
- \2
P Pa for T <9 =9
HenceY =0 in (2f), The as 1in (16) may be computed as coefficients

of Fourier series., For the atove load,

ahz%s &EPS,L @S N =) +{|- %‘T)u& AT ]

or
? it
qv\ﬁ:_ o, Nn= “h%,l}"'

The constants ), and J which appeared in (29) and (30), now are

T ™

N 5 and J= 7%; L

3

Hence, one may compute C, , ¢h and Y, as riven by (21) and (32).
Then letting X, = N ,M“fo,;(,‘ﬁ(),,,ﬁm"w\and&?n F,, o« i . in Table I,
one obtains the expressions Sy, in (3L). This ccmpletes the
particular solution and one may write down the complete solution

as follows:

Xu= PM Qe Zi x“'[(‘kv\w‘ Chy + Biam Enﬁ.) c.os(,«\m n %>+(Av\w\€w;_‘3nn‘5nb Aim(umow\k&]
+ v;'l“‘fiffw EW%*“'\ME‘W) wa(ihin, QM‘Q'*G\AM Cay = RSz ) B (M ‘@—.\
iy LTy b, T <ol Ly )4 (Gm T = by T ) plnl e, Sn @]

+q7 ‘WL( YnvaS 7 b Cp ) g e, Qon w)+( %nw\ag - Muwm '57)/*'@\("4“& ﬁA\‘A).]
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- hllé
Hat" snmcn} i (A 14)
o 230

The first set of four boundary conditions in (36) for y = § ,
where 3 :fé} s 1f they are put in a complete form, reads

5% { (i eon o t3) - Bri poum (prns A )] T
+[Bxi cn.gm.%«ﬁ) + Ani aen (Mer 4n5) ] c‘nz}

155 N B e (s 40 5)- Hoi oo Cpns b £)7 E g
+EH"‘: M(/“"'%‘§) + Gm.' ﬂflr\f(/“m /&\g)j C—vw—}

+F N Dot ety ) =i o0 (ne o )T Ens
i o (e b 5) 4 v o (s 405 )] T §
137 M Bt 0 (Mo dn§) = hnc poom (Mos Ao $)] o
+ [bne Cn(par An5)+ Gni pponGotor 4 §)ICng = - SniCn

for every n and where i = 1,2,3, and L., The other set of four

conditions, for y = 1, is
An« Z:u +BM<ZM. + GnreCnz + Hrw Covw

+aﬂKFAS ‘f’bnka‘ +?"\L’Z—h1 + /Mkz-n( T =~Snr Cn
where k = 5, 9, 15 and 1% and also for every n, The eicht

constants E;; are readlly determined from these eight simultaneous
equations., Substitutint thesez:;back into (Ally), one ottains all
the stresses, However, it must be noted that for the pressnt
stiffened segment, the coefficienﬁsf%in Tabtle I, for m from 9 to
17 inclusive have to be modified by multiplying them by the

constant ¢ given in (A3).
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It is seen from Table I that the maximum normal stress

and moment occur at s=(, and A= —@2-' . Hence, for design purpose,
the resultant stresses and moments of the stiffener at that

point may be ortained by multiplying the stress and moments at

9

that point by the spacinz between the two neighboring stiffeners,b.

~

To each of the two straizht edges, a bar is regquired to be
attached. This tar is subjected to the axial sahearing force
Nss and transvers: shearing force Se . In order to fulfill
the assumption that the straisht edzes of the segment are free
to rotate and to move in the tangential direction, the connection

between the bar and the edge 1s recuired to be designed accordingly.
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ArPEZNDIX JI. NOTATION
The following symbols have been adopted for use in this report:

a~ = Fouriler coefficients;

8nms Ppm = coefficients defined in equation (27b);

Apn, Ep, Cp = coefficients of solutions of u, v and w in equations (15);
Aps Bp,Cpn = coefficients of the particular solutions of u, v and w;
Apms Bnm = coefficients defined in equation (26b) and given in Table I;
Anjs Bnj, an = coefficients of solutions of u, v and w associated

with the root A pji;

djyj = coefficients defined in equations (20);
di? = coefficients defined in eauations (21);
D = constant defined in ecuation (2);

De = constant defined in equation (AlL);

t._‘L.l

= Young's modulus of elasticity;

£, = Coefficients defined in equation (2L);

Fm, fm = reneral forms of lomogeneous solutions accociated with

Anl to Apy and Apg to A pp respectively;
Fams fnm = functions defined in ecuations (26t) and (27b) respectively;
Gnms Hpy = coefiicients defined in equation (26b);

Cnms Rnm = coefficients dsefin:=d in e uation (27b);

Inm = coefficient defined in equation (3l);

-

J = constant defined in eguations (30);
k = constant defined in ecuation (6);
kg = constant defined in ecuation (i5);

K = bending rigidity defined in eguations (2);

Ky = bending rigidity of stiffened shell defined in equation (AlL);
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L, L1 = distances measured from the apex along the conical surriace
to the fixed end and iree end of the segment of the cone res-
pectively;
Mg Mg = normal moments per unit length in planes perpendicular
to s and @ directions
Mge » My o = Twisting moments per unit length in planes perpendicular

to s and @ directions respectively;

Ng, Ng = FNormal rForces per unit length in planes perpendicular to
s and @ directions respectively;
cho N es = tangential shearing -forces per unit in planes perpendicular
~ 3

n

to s and @ Jirections r

@]

spectively;

¢

R

Psy Pe 5 Yp = surface loads per unit area in the directions of s,
4 and the normal to the middle surface respectively;
G s Qg = transverse shearing forces in planes perpendicular to
s and @ directions respectively per unit lenzth;
Qm = coefficients defined in ecuation (26) and given in Table I;

s = distance measured from the apex along the conical surface;

S = coefficients defined in equation (2Lt);
Sgs Se = resultant transverse shearing forces due to &g, Qg Mge
and M ;
¢s’

t = thickness of shell;
tg = equivalent thickness of stiffened shell defined in equation (A2);
Tq, Te¢ = resultant tangential shearing forces due to Ngg 5 Vos
Mge and Mgq;
u,v,Ww = components of dleplacement in the directions of s, ® and
the normal to the middle surface directions respectively;

UpsVpsWy = particulamksolutions of u, v and w;

‘X = general solutions defined in ecuation (35a);
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« = angle between the conical surface and a plane perpendicular
to the axis of the cone;
« = coefficients deiined in equations (25);

; = real numbers oi’a%j and /&y ;

= constant defined in equation (5);

(fa
£\
¢ = constant ziven in equation (28);-
&
6 = angle between two meridians;

e

, = angle between the two extreme meridians of the shell segment;

>
3
I

undetermined constant riven in equation (17);
’\’U' = jth root of An
A = xfhown constant given by ecuation (29);
Mn, M, Maz= imaginary parts of A, and )“U' ;
Zn, Xni, %ur= real parts of A and /\..J ;
'V = Poisson's ratio;

£
.

ja‘z coefficient defined in equation (26a) and given in Table 1;

Differentiation Notation: Differentiation with respect to s and
@ coordiantes are indicated by dot "."

and prime "," respectively.
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